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Abstract

In order to acquire safety-design criteria for preventing friction-induced vibration, dimensionless analysis and numerical

simulation have been conducted for a single-degree-of-freedom system with friction. The model includes the discontinuity

between static and kinetic friction and the dependence of the kinetic friction coefficient on the relative velocity. Dimensionless

description reduces the number of parameters from nine to five; four of the five dimensionless parameters control the

occurrence limit of friction-induced vibration. We have derived the occurrence-limit equation on the basis on a previous study

on stick–slip in the Coulomb friction model, and we have constructed the discriminant inequalities with the four parameters.

They are sufficient conditions for preventing friction-induced vibration, i.e., not only stick–slip but also instability of steady

sliding; they are expected to provide safety-design criteria of sliding systems with high usability and high accuracy.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Almost all mechanical systems utilizing sliding surfaces are designed under the assumption that the surfaces
operate smoothly. The generation of friction-induced vibration (FIV) should therefore be estimated and
prevented in the design stage of mechanical systems, not only for achieving primary performance, i.e.,
high function and long lifetime of the mechanical systems, but also for maintaining secondary performance,
i.e., comfort for users and the environment without vibration and noise.

For example, when the dependence of the kinetic friction coefficient on the relative velocity is negative, it
has been known that steady sliding at the equilibrium point becomes unstable, and the instability leads to the
generation of vibration [1]. Consequently, a possible safety-design criterion of the sliding system for
preventing vibration would be making the velocity dependence of the kinetic friction coefficient positive; this is
often achieved by the development of lubricant and material, e.g., the development of automatic transmission
fluids and paper-based material for the suppression of shudder [2–16].
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

a inverse of the velocity constant (s/m)
(Eq. (12))

b fitting coefficient (Eq. (60))
c viscous damping coefficient (Ns/m)
F friction (N)
Feq friction in the equilibrium state (N)

(Eq. (19))
Fk modulus of kinetic friction (N) (Eqs. (8)

and (11))
Fs static friction (N) (Eq. (4))
Fsmax maximum static friction (N) (Eq. (5))
I1 modified Bessel function of the first kind

(Eq. (57))
k stiffness (N/m)
m mass of the object (kg)
t time (s)
V velocity of the floor surface (m/s)
Vrel relative velocity (m/s) (Eq. (13))
W contact load (N)
x position of the object (m)
~x position of the object measured from the

equilibrium position (m) (Eq. (17))
xeq equilibrium position of the object (m)

(Eq. (18))
a dimensionless parameter (Eq. (28))
b instability factor (Eq. (40))
bcr critical instability factor (Eq. (70))
g dimensionless parameter (Eq. (26))
Dg dimensionless parameter (Eq. (27))
Dmk friction-coefficient difference (Eq. (14))

Dms friction-coefficient difference (Eq. (15))
z dimensionless parameter (damping ratio

of the system) (Eq. (25))
zeff1 effective damping ratio for l5lA

(Eq. (55))
zeff2 effective damping ratio for lblA

(Eq. (62))
l dimensionless parameter (Eq. (24))
lA constant (Eq. (45))
meq friction coefficient in the equilibrium

state (Eq. (19))
mk kinetic friction coefficient (Eq. (12))
mk0 kinetic friction coefficient for Vrel ¼ 0

(Fig. 2)
mkN kinetic friction coefficient for Vrel ¼N

(Fig. 2)
ms static friction coefficient
x dimensionless position of the object

(Eq. (22))
xsmax maximum of x in the stick state (Eq. (33))
xsmin minimum of x in the stick state (Eq. (32))
s1 dimensionless modification factor for

l5lA (Eq. (56))
s2 dimensionless modification factor for

lblA (Eq. (67))
t dimensionless time (Eq. (21))
j dimensionless function (Eq. (29))
on natural frequency of the system (rad/s)

(Eq. (23))
( � ) derivative with respect to time t

(0) derivative with respect to dimensionless
time t

K. Nakano, S. Maegawa / Journal of Sound and Vibration 324 (2009) 539–555540
However, this criterion is not sufficient because there is another type of FIV, i.e., stick–slip [17]. The
discontinuity between static and kinetic friction is the origin of stick–slip, and the stability of steady sliding is
determined regardless of the discontinuity. Consequently, stick–slip is generated if the equilibrium point is
stable [18–20], but the instability of steady sliding often leads to stick–slip.

Intrinsically, FIV should be treated as the problem of dynamic systems. Actually, a vast number of studies
have been carried out on the FIV in various types of systems. For example, some multi-degree-of-freedom
systems were analyzed to know the dynamic behavior of mechanical systems with friction and the occurrence
limit of FIV [21–29], and some models were made to know the effect of tangential compliance in contact zones
on the dynamics [30–34] including chaos [32]. Moreover, instead of general models, some more practical
models, e.g., finite element models, were used to solve problems related to FIV in actual equipments [35–39].
Obviously, such previous studies are worthwhile for individual systems, but a general understanding based on
a simple model is also necessary as the basic strategy, not only for tackling unsolved problems but also for
preparing for possible problems in newly developed systems.

The stick–slip appearing in a single-degree-of-freedom system with Coulomb friction must be the simplest
basic problem. Through the dimensionless analysis of the model, Nakano and Kikuchi found out the existence
of two dimensionless parameters controlling the occurrence and non-occurrence of stick–slip [18,19], and
Nakano presented a non-occurrence inequality of stick–slip in a power-law form as the sufficient condition
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[20]. This inequality has a simple form with high accuracy for usage in the design stage of sliding systems, but
it is impossible to express the relationship between instability of steady sliding and stick–slip because it is
based on the Coulomb friction model in which the kinetic friction coefficient is assumed to be constant.

The present study is based on the concept of Nakano and Kikuchi [18–20]; the present model has been
constructed by considering the dependence of the kinetic friction coefficient on the relative velocity so that it
reduces to the Coulomb friction model by setting a dimensionless parameter equal to zero, Dg ¼ 0. After
showing the occurrence limit of FIV obtained by numerical simulation, a set of discriminant inequalities for
preventing FIV, Eqs. (71)–(73), will be presented as the safety-design criteria of sliding systems.

2. Modeling

2.1. Analytical model and equation of motion

Fig. 1 shows the analytical model: a single-degree-of-freedom system with friction. A spring k and a dashpot
c support an object m, and the object moves in the x direction. The object makes contact with a floor surface
moving with a velocity V, and friction F acts on the contact surface. By selecting the origin x ¼ 0 at the object
position with the natural length of the spring, the equation of motion is given by

m €xþ c _xþ kx ¼ F (1)

where ( � ) denotes the derivative with respect to time t.
There are three types of friction states: stick, slip-I, and slip-II. The friction for each state is described as

follows:
�
 stick state:

_x ¼ V (2)

F ¼ F s (3)

�FsmaxpF spFsmax (4)

Fsmax ¼ msW (5)
�
 slip-I state:

_xoV (6)

F ¼ F k (7)

Fk ¼ mkW (8)
Fig. 1. Analytical model: single-degree-of-freedom system with friction.
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�
 slip-II state:

_x4V (9)

F ¼ �Fk (10)

Fk ¼ mkW (11)
where Fs is the static friction; Fsmax, the maximum static friction; Fk, the modulus of kinetic friction; ms and mk,
static and kinetic friction coefficients; and W, the contact load. The velocities of the object and floor surface,
_x and V, respectively, determine which state is realized, as described by Eqs. (2), (6), and (9).

2.2. Dependence of friction coefficient on relative velocity

Fig. 2 shows the dependence of the friction coefficient on the relative velocity. The kinetic friction coefficient
is defined as a function of the relative velocity Vrel:

mk ¼ mkðV relÞ ¼ mk0 þ Dmkð1� e�ajV reljÞ (12)

where

V rel ¼ V � _x (13)

Dmk ¼ mk1 � mk0 (14)

and a is the inverse of the velocity constant. Note that Fig. 2 is a schematic for Dmko0.
Moreover, the discontinuity between static and kinetic friction is expressed by using

Dms ¼ ms � mk0 (15)

ms4mk0 (16)

Definitely, we find nine independent parameters in the present model: m, c, k, ms, mk0, mkN, a, W, and V. It is,
however, not easy to determine the structure of the solutions in nine-dimensional space.

2.3. Dimensionless description

In order to simplify the governing equations, dimensionless variables and parameters are introduced.
Fig. 2. Dependence of the friction coefficient on the relative velocity.
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Before their introduction, the coordinate x is shifted to ~x:

~x ¼ x� xeq (17)

where

xeq ¼
F eq

k
(18)

F eq ¼ meqW ¼ mkðV ÞW (19)

The subscript ‘‘eq’’ indicates the equilibrium state. By using the new coordinate ~x, the equation of motion is
given by

m €~xþ c _~xþ k ~x ¼ F � F eq (20)

The dimensionless time t and dimensionless position x are introduced into Eq. (20):

t ¼ ont (21)

x ¼
on

V
~x (22)

where on is the natural frequency of the system:

on ¼

ffiffiffiffi
k

m

r
(23)

By using the following dimensionless parameters

l ¼
DmsW

V
ffiffiffiffiffiffiffi
mk
p (24)

z ¼
c

2
ffiffiffiffiffiffiffi
mk
p (25)

g ¼
mk0

Dms

(26)

Dg ¼
Dmk

Dms

(27)

a ¼ aV (28)

and the following dimensionless function

j ¼ jðx0Þ ¼ Dglð1� e�aj1�x
0
jÞ (29)

we obtain the following governing equations in dimensionless form:
�
 stick state:

x0 ¼ 1 (30)

xsminpxpxsmax (31)

xsmin ¼ �ð1þ 2gÞl� 2z� jð0Þ (32)

xsmax ¼ l� 2z� jð0Þ (33)
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slip-I state:
�
x0o1 (34)

x00 þ 2zx0 þ x ¼ jðx0Þ � jð0Þ (35)
�
 slip-II state:

x041 (36)

x00 þ 2zx0 þ x ¼ �2gl� jðx0Þ � jð0Þ (37)
where (0) denotes the derivative with respect to dimensionless time t.
We find that the number of parameters included in the governing equations decreases from nine to five by

using the dimensionless description. The five parameters are defined in Eqs. (24)–(28): l, z, g, Dg, and a, and
the moving velocity of the floor surface is normalized as shown in Eqs. (30), (34), and (36). Note that the other
friction laws are likely to introduce additional dimensionless parameters into the governing equations.
3. Existing criteria

Thus far, there are two known criteria for preventing FIV. One is based on the stability around the
equilibrium position, and the other on the occurrence limit of stick–slip with Coulomb friction. In this section,
the two criteria are described with the dimensionless parameters defined by Eqs. (24)–(28) as the preparation
of the present study.
3.1. Stability limit around equilibrium position

If the equilibrium position is unstable, a disturbance grows and results in self-excited vibration, no matter
how small the disturbance is. Consequently, the stability around the equilibrium position is a necessary
condition for preventing the FIV.

The function j is linearized around the equilibrium position x0 ¼ 0:

jðx0Þ ffi jð0Þ þ
dj
dx0

����
x0¼0

x0 (38)

From Eqs. (35) and (38), we obtain

x00 þ 2ðz� blÞx0 þ x ¼ 0 (39)

where

b ¼ �1
2
Dgae�a (40)

The stability limit is realized when the coefficient of x0 is zero, that is,

z ¼ bl (41)

Fig. 3(a) shows the example of the stability limit described by Eq. (41), where Dg is changed under a ¼ 10.
The stability limit is a straight line with a slope of unity in the double-logarithmic plot of l and z. The straight
line shifts to the left and the unstable region enlarges as b increases, and thus the parameter b shows the degree
of instability.
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Fig. 3. Existing criteria: (a) the stability limit under a ¼ 10 described by Eq. (41); (b) the occurrence limit of stick–slip (SS) in the Coulomb

friction model described by Eqs. (42)–(44) and (46).
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3.2. Occurrence limit of stick– slip with Coulomb friction

Even if the equilibrium position is stable, the discontinuity between the static and kinetic friction causes
stick–slip. When Dg is zero, the dependence of the friction coefficient on the relative velocity is eliminated, and
Eqs. (30)–(37) reduce to the governing equations for the Coulomb friction model [20].

The occurrence limit of stick–slip with Coulomb friction is obtained by considering the condition where the
maximal value of dimensionless velocity in the slip-I state does not reach unity after the stick-to-slip transition.
The exact solution of the occurrence limit is given by

lnð1� 2zlþ l2Þ ¼
zffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p 3pþ 2 tan�1

1� zl

l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

(42)

and this exact solution has two asymptotes in the double-logarithmic plot of l and z [20], given by

z ¼
1

4p
l2 for l5lA (43)

z ¼ 1 for lblA (44)

where lA is the l component of the intersecting point A (lA, 1) between the two asymptotes:

lA ¼ 2
ffiffiffi
p
p

(45)

For Eq. (42), by using the two asymptote Eqs. (43) and (44), an approximate solution is proposed in a power-
law form [20]:

ð1� zÞn

z
l2 ¼ 4p (46)

The exact solution, asymptotes, and approximate solutions for n ¼ 1 and 5 are shown in Fig. 3(b). The two
dimensionless parameters, l and z, control the occurrence and non-occurrence of stick–slip with Coulomb
friction. The former l enhances the occurrence of stick–slip, and the latter z suppresses it.
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4. Numerical simulation

4.1. Method

Based on the dimensionless governing Eqs. (30)–(37), the time evolutions of x and x0 were acquired
numerically by using the Runge–Kutta method, in which four different time steps are adopted to guarantee
the accuracy of the transition time between the stick and slip states to the order of 10�12 [40]. The initial
condition was selected at the stick-to-slip transition point: x ¼ xsmax and x0 ¼ 1.

From the time evolutions, the trajectory was obtained in the dimensionless phase plane, x vs. x0, shown in
Fig. 4. Three types of friction states are represented in the plane according to Eqs. (30), (31), (34), and (36); the
stick state corresponds with segment PQ on line L (x0 ¼ 1), the slip-I state corresponds with the half plane
below L, and the slip-II state corresponds with the half plane above L. Note that point P represents the stick-
to-slip transition point, P (xsmax, 1); if a trajectory meets PQ, the trajectory proceeds to P in the stick state,
and the state changes to the slip-I state at P according to the negative acceleration, x00P ¼ –lo0.

4.2. Four types of trajectories

Fig. 5 shows eight examples of time evolutions and trajectories obtained by the numerical simulation.
Among the five dimensionless parameters, three are invariants: z ¼ 0.001, g ¼ 2, and a ¼ 1. In Figs. 5(a)–(d), l
is also an invariant: l ¼ 0.01. A slow-spiraling trajectory appears in (a) and (b), but a limit cycle appears in (c)
and (d). In Figs. 5(e)–(h), l is unity. A fast-spiraling trajectory appears in (e), but a limit cycle appears in
(f)–(h). We can find a tendency that a limit cycle appears for small Dg.

Through the numerical simulation, we found four types of trajectories shown in Fig. 6. One is for damped
motion (DMP): a trajectory from point P spirals in toward the equilibrium point O via the slip-I state, e.g.,
Figs. 5(a)–(e). The second is for a limit cycle (LC-A): a trajectory from P returns to P via the slip-I and stick
states, e.g., Figs. 5(f) and (g). The third is for a limit cycle (LC-B): a trajectory from P returns to P via
the slip-I, slip-II, and stick states, e.g., Fig. 5(h). The fourth is for a limit cycle (LC-C): a trajectory from P

does not return to P, but a limit cycle is formed outside the segment PQ via the slip-I and slip-II states, e.g.,
Figs. 5(c) and (d).

Fig. 7 shows the occurrence regions of the four types of trajectories obtained by the numerical simulation
under z ¼ 0.001, g ¼ 2, and a ¼ 1. For an invariant l, the type of trajectory changes in the order of DMP,
LC-A, LC-B, and LC-C with decreasing Dg.

4.3. Occurrence limit of FIV

In the present system, the occurrence of a limit cycle is synonymous with the occurrence of FIV, and the
sufficient condition for the non-occurrence of a limit cycle is that the dimensionless velocity x0 does not reach
Fig. 4. Dimensionless phase plane and three types of friction states.
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Fig. 5. Numerical results under z ¼ 0.001, g ¼ 2, and a ¼ 1; open circle: initial point (stick-to-slip transition point P): (a) l ¼ 0.01, Dg ¼ 1;

(b) l ¼ 0.01, Dg ¼ 0; (c) l ¼ 0.01, Dg ¼ �1; (d) l ¼ 0.01, Dg ¼ �2; (e) l ¼ 1, Dg ¼ 1; (f) l ¼ 1, Dg ¼ 0; (g) l ¼ 1, Dg ¼ �1; (h) l ¼ 1,

Dg ¼ �2.
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to unity in the slip-I phase starting from the stick-to-slip transition point P. Consequently, the occurrence limit
of FIV does not depend on Q (xsmin, 1), and the minimum necessary equations for finding the occurrence limit
of FIV are as follows:
�
 stick state:

x0 ¼ 1 (47)

xpxsmax (48)
�
 slip-I state:

x0o1 (49)

x00 þ 2zx0 þ x ¼ jðx0Þ � jð0Þ (50)
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Fig. 6. Typical trajectories of damped motion (DMP) and three types of limit cycles (LC-A, LC-B, and LC-C).

Fig. 7. Occurrence condition of damped motion (DMP) and three types of limit cycles (LC-A, LC-B, and LC-C) under z ¼ 0.001, g ¼ 2,

and a ¼ 1.
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It should be noted that a dimensionless parameter g does not appear in Eqs. (47)–(50). This means that the
occurrence limit of FIV is determined by four dimensionless parameters; they are l, z, Dg, and a.

Based on Eqs. (47)–(50), we acquired the occurrence limit of FIV numerically. The solid lines in
Figs. 8(a)–(c) show the numerical results. A peak with a maximal point at l ¼ 2.67 appearing in (a) is lowered
in (b) and (c) with increasing a. However, the effect of a on the FIV region is not monotonic; among the three
conditions of a in Fig. 8, the FIV region of (b) is the widest for a small l.

Note that the three solid lines pass through a common point denoted by an open circle in Fig. 8, i.e.,
l ¼ 0.112 and Dg ¼ 0. This point corresponds to the occurrence limit of the Coulomb friction model; the value
of l is obtained by solving Eq. (42) under z ¼ 0.001.
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Fig. 8. Occurrence limit of FIV under z ¼ 0.001; solid line: numerical results, thin broken lines: occurrence limit described by Eqs. (58)

and (66), thick broken line: occurrence limit described by Eq. (69); open circle: occurrence limit for the Coulomb friction model:

(a) a ¼ 0.1; (b) a ¼ 1; (c) a ¼ 10.
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5. Discriminant inequalities for preventing FIV

The numerical results described in the previous section can be considered as exact solutions, but they are
only parts of the infinite solutions generated from the governing equations, Eqs. (30)–(37). The equations
include a nonlinear function j; hence, it is not easy to acquire the exact solution analytically. If it is possible to
obtain the exact solution, it must be much more complicated than Eq. (42); furthermore, it would be difficult
to expect high usability in a practical sense.

Consequently, in what follows, the occurrence-limit equation in a possible simple form is derived with
somewhat rough estimations; the basis is the two asymptotes for the Coulomb friction model, i.e., Eqs. (43)
and (44). After deriving the desired equation, its accuracy is examined in comparison with the numerical
solutions, and a set of the discriminant inequalities are proposed for preventing FIV.
5.1. Occurrence-limit equation for small l

In this section, let us consider the case for small l. Based on Eq. (43) under the assumption of constant
kinetic friction coefficient, we assume the following relationship as the occurrence-limit equation:

zeff1 ¼
1

4p
l2 for l5lA (51)
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where zeff1 is the effective damping ratio. In addition, we assume that Eq. (50) reduces to the following form:

x00 þ 2zeff1x
0
þ x ¼ 0 (52)

By equating the energy dissipations in a period of Eqs. (50) and (52), we obtainI
f2zeff1x

0
gdx ¼

I
f2zx0 � jðx0Þ þ jð0Þgdx (53)

At the occurrence limit for l5lA, the time evolution of x0 can be approximated by a sinusoidal function with a
unit amplitude and a unit angular frequency [20], e.g., Fig. 5(b):

x0 ¼ cos t (54)

By executing the integral of Eq. (53) with Eq. (54), we obtain

zeff1 ¼ zþ Dgs1 (55)

where s1 is the modification factor from the Coulomb friction model:

s1 ¼ le�aI1ðaÞ (56)

The function I1 is the modified Bessel function of the first kind, which is expressed by an integral form or a
series form:

I1ðaÞ ¼
1

2p

Z 2p

0

ea cos t cos tdt ¼
X1
s¼0

1

s!ðsþ 1Þ!

a
2

� �2sþ1

(57)

Consequently, from Eqs. (51) and (55), we obtain the occurrence-limit equation for small l:

z ¼
1

4p
l2 � Dgs1 for l5lA (58)

Note that Eq. (58) reduces to Eq. (43) for Dg ¼ 0.
In Fig. 8, the thin broken line starting from the bottom left shows the occurrence limit expressed by Eq. (58).

For small l, it shows a good agreement with the solid line as the exact solution; we can obtain high accuracy of
the occurrence-limit equation, Eq. (58).
5.2. Occurrence-limit equation for large l

Subsequently, let us consider the occurrence limit of FIV for large l. Based on Eq. (44), we assume the
following relationship as the occurrence-limit equation:

zeff2 ¼ 1 for lblA (59)

where zeff2 is the effective damping ratio. In addition, we assume that zeff2 is expressed by

zeff2 ¼ z�
1

2

jð1Þ � jð�blÞ
1� ð�blÞ

(60)

where b is a fitting coefficient. By neglecting small terms in Eq. (60), we obtain

zeff2 ¼ zþ
Dg
2b
ð1� e�balÞ (61)

or

zeff2 ¼ zþ Dgs2 (62)

where s2 is the modification factor from the Coulomb friction model. From Eqs. (59) and (61), we obtain

lim
l!1

Dg ¼ 2bð1� zÞ (63)
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On the other hand, through the numerical simulation, we found that Dg at the occurrence limit is roughly
approximated by

lim
l!1

Dgffi 1
2
ð1� zÞ for 0ozo1 (64)

From Eqs. (63) and (64), we obtain the value of b:

b ¼ 1
4

(65)

Consequently, from Eqs. (59), (61), (62), and (65), we obtain the occurrence-limit equation for large l in the
following form:

z ¼ 1� Dgs2 for lblA and 0ozo1 (66)

where

s2 ¼ 2ð1� e�al=4Þ (67)

Note that Eq. (66) reduces to Eq. (44) for Dg ¼ 0.
In Fig. 8, the thin broken line toward the middle right shows the occurrence limit expressed by Eq. (66). For

large l, it shows a good agreement with the solid line as the exact solution; we can obtain high accuracy of the
occurrence-limit equation, Eq. (66).

5.3. Occurrence-limit equation in integrated form

The occurrence-limit equation integrating Eqs. (55) and (62) is obtained on the basis of Eq. (46) for n ¼ 1:

1� zeff2
zeff1

l2 ¼ 4p (68)

From Eqs. (55), (62), and (68), we arrive at

ð1� zÞl2 � 4pz ¼ Dgð4ps1 þ l2s2Þ for 0ozo1 (69)

Note that Eq. (69) reduces to Eq. (46) for Dg ¼ 0.
In Fig. 8, the thick broken line shows the occurrence limit expressed by Eq. (69). Since it is acquired on the

basis of Eqs. (55) and (62) for small and large l, respectively, it reduces to the two thin broken lines for l5lA

and lblA, and shows a good agreement with the exact solution. An inaccurate prediction is found for
intermediate values of l, especially for small a as shown in Fig. 8(a), which might be caused by the function s2
in which the two parameters exist only as their product al; by decreasing the value of al, small a degrades the
accuracy of Eqs. (62) and (69) including the function s2.

5.4. Proposed discriminant inequalities as sufficient conditions

By integrating the stability limit around the equilibrium point, Eq. (41), and the occurrence limit of FIV
starting from the stick-to-slip transition point, Eq. (69), we obtain the discriminant inequalities for preventing
FIV. By considering that the stability-limit equation, Eq. (41), passes through point A shown in Fig. 3(b) when
b ¼ bcr

bcr ¼
1

lA

¼
1

2
ffiffiffi
p
p (70)

the discriminant inequalities can be described as follows:
�
 b4bcr:

z4bl (71)
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bobcr:
�
z4bl for z40 (72)

ð1� zÞl2 � 4pzoDgð4ps1 þ l2s2Þ for 0ozo1 (73)
It should be noted that the discriminant inequalities are the sufficient conditions for preventing FIV, which are
suitable for the safety-design criteria of sliding systems.

For b4bcr, the stability around the equilibrium point, Eq. (71), is the necessary and sufficient condition
because the stability limit exceeds the occurrence limit of FIV. On the other hand, for bobcr, the stability
condition is necessary but not sufficient, and the additional condition, Eq. (73), is also necessary. When
Eq. (72) is satisfied but Eq. (73) is not satisfied, smooth sliding motion is realized at the equilibrium point, but
a disturbance, e.g., unexpected impulsive force, causes FIV. In contrast, if Eqs. (72) and (73) are satisfied
9. Comparison between the numerical simulation and proposed discriminant inequalities (Eqs. (71)–(73)) with respect to the

rrence limit of FIV; broken line: occurrence limit for the Coulomb friction model (Dg ¼ 0): (a) numerical simulation under a ¼ 0.1; (b)

osed discriminant inequalities under a ¼ 0.1; (c) numerical simulation under a ¼ 10; (d) proposed discriminant inequalities under

0.
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Fig. 10. Comparison between the numerical simulation and proposed discriminant inequalities (Eqs. (71)–(73)) with respect to the

occurrence limit of FIV; broken line: occurrence limit for the Coulomb friction model (Dg ¼ 0): (a) numerical simulation under z ¼ 0.001;

(b) proposed discriminant inequalities under z ¼ 0.001.
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simultaneously, the effective damping of the system is enough to dissipate the energy of such a disturbance,
and smooth sliding motion is ensured.

The accuracy of the proposed discriminant inequalities was examined in other cross sections of the structure
of solutions. Figs. 9 and 10 show the comparison between the numerical simulation and proposed discriminant
inequalities with respect to the occurrence limit of FIV in the l vs. z plane and l vs. a plane, respectively. The
occurrence limit changes with varying Dg from the broken line representing the Coulomb friction model,
Dg ¼ 0. We can confirm that the proposed discriminant inequalities have the ability to extensively predict the
conditions for preventing FIV.
6. Conclusions
(1)
 For the exponential friction law used in the present system, there are five dimensionless parameters (l, z, g,
Dg, and a defined by Eqs. (24)–(28)) determining the dynamics of a sliding system considering the
discontinuity between static and kinetic friction and the dependence of the kinetic friction coefficient on
the relative velocity. Among the five parameters, g does not affect the occurrence limit of friction-induced
vibration (FIV).
(2)
 There are three types of FIV. One is via the stick and slip-I states (LC-A); the second is via stick, slip-I, and
slip-II states (LC-B); and the third is via slip-I and slip-II states (LC-C). The occurrence limit of LC-A
determines the occurrence limit of the FIV.
(3)
 The proposed discriminant inequalities (Eqs. (71)–(73)) are described with four dimensionless parameters
(l, z, Dg, and a); they are the sufficient conditions for preventing FIV considering the stability limit around
the equilibrium point and the occurrence limit of FIV starting from the stick-to-slip transition point.
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